Search This Blog

pCloud Crypto

Mathematical problem & solution for Force, Stress, Energy

 

Problem:

A cylindrical rod of length 𝐿=2 meters and cross-sectional area 𝐴=0.01 square meters is made of a material with Young's modulus 𝐸=200 GPa. A tensile force 𝐹=10,000 Newtons is applied along the length of the rod.

  1. Calculate the stress in the rod.
  2. Calculate the strain in the rod.
  3. Calculate the elongation of the rod.
  4. Calculate the elastic potential energy stored in the rod due to the applied force.

Solution:

1. Calculate the Stress

Stress (𝜎) is defined as the force (𝐹) applied per unit area (𝐴):

𝜎=𝐹𝐴

Given:

  • 𝐹=10,000 N
  • 𝐴=0.01
𝜎=10,000 N0.01 m2=1,000,000 N/m2=1 MPa

So, the stress in the rod is 1 MPa.

2. Calculate the Strain

Strain (𝜖) is defined as the stress divided by Young's modulus (𝐸):

𝜖=𝜎𝐸

Given:

  • 𝜎=1 MPa=1×106 N/m2
  • 𝐸=200 GPa=200×109 N/m2
𝜖=1×106 N/m2200×109 N/m2=5×106

So, the strain in the rod is 5×106.

3. Calculate the Elongation

Elongation (Δ𝐿) is calculated by multiplying the original length (𝐿) by the strain (𝜖):

Δ𝐿=𝐿𝜖

Given:

  • 𝐿=2 m
  • 𝜖=5×106
Δ𝐿=2 m×5×106=10×106 m=10 micrometers

So, the elongation of the rod is 10 micrometers.

4. Calculate the Elastic Potential Energy

The elastic potential energy (𝑈) stored in the rod is given by:

𝑈=12𝜎𝜖𝑉

where 𝑉 is the volume of the rod. The volume 𝑉 is the product of the cross-sectional area (𝐴) and the length (𝐿):

𝑉=𝐴𝐿

Given:

  • 𝐴=0.01
  • 𝐿=2 m
𝑉=0.01 m2×2 m=0.02 m3

Now, calculate the energy:

𝑈=12×1×106 N/m2×5×106×0.02 m3
𝑈=12×1×106×5×106×0.02
𝑈=12×5×102=2.5×102 J

So, the elastic potential energy stored in the rod is 0.025 Joules.

Summary:

  • Stress in the rod: 1 MPa
  • Strain in the rod: 5×106
  • Elongation of the rod: 10 micrometers
  • Elastic potential energy stored in the rod: 0.025 J

No comments:

Post a Comment

pCloud Lifetime

Popular Posts